Experimental Radio Applications at the FCC

This summarizes a selection of applications for the Experimental Radio Service received by the FCC during March 15-30, 2010. These are related to weather radar, medical telemetry, RFID, satellite, aircraft telemetry, high-frequency direction finding, and meteorological telemetry.

  • Fitness Foundation filed an application (with supporting exhibit) for experimental license to test wireless monitoring and reporting of people’s activity levels in support of an effort to combat obesity and promote active lifestyles. Operation is to be on 174-216 MHz and 512-700 MHz near Mt. Lebanon, Pennsylvania. FCC staff is concerned about the potential for interference to others and has asked the applicant why so much bandwidth is needed.
  • Hyperion Technology Group filed an application (with supporting exhibit) for experimental license to support the development of a system capable of early detection of extreme weather phenomena, including wind shear, tornadoes and hurricane-spawned tornadoes. Operation is to be nationwide on 10.4-10.6 GHz. FCC staff questions this frequency selection, saying in correspondence to the applicant that there are two footnotes to the U.S Table of Allocations that are problematic. US58 prohibits pulsed emissions in 10-10.5 GHz. US59 prohibits any emission other than N0N in 10.5-10.55 GHz. Staff further observes that while experimental licenses are not always bound by allocation restrictions, there is great likelihood that NTIA would object to this application when it gets coordinated with government users. The applicant has suggested a compromise, and notes that the frequency range was selected based on the availability of relatively-inexpensive commercial off-the-shelf hardware for the initial research. Once the concept is validated and high-energy wind phenomena are better understood, it is the applicant’s intention to move to a different frequency and build custom hardware to support that frequency.
  • David Miller (MIT) filed an application (with supporting exhibits) for experimental license to conduct testing of the CASTOR (Cathode/Anode Satellite Thruster for Orbital Repositioning) satellite. The intent is to validate the performance and application of Diverging Cusped Field Thruster (DCFT) technology. According to the Miller, this will be achieved by taking on-orbit state data to compare the degradation experienced by the DCFT to that of similar technologies such as Hall thrusters. In order to measure the thruster’s on-orbit performance, efficiency, and degradation, it is necessary to transmit sensor data and pictures obtained from an onboard camera to a ground station. Operation is to be in low-earth orbit (700-3000 km) on 2.4000-2.4835 GHz.
  • Northrop Grumman filed an application (with supporting exhibit) for special temporary authority for the purpose of developing an airborne platform with a microwave transmitter to fulfill a contract with the US Air Force. The requested frequency band is 2250-2260 MHz.
  • The University of Washington filed an application for special temporary authority to operate on 433.845-433.995 MHz from free-flying balloons launched in Washington State. This is to support, as part of a class project, research in atmospheric structure using a transmitter as a sounder to make atmospheric temperature profiles and as a beacon to recover the transmitter.
  • Keurig, Inc. filed an application for special temporary authority to operate RFID technology on 902-928 MHz. Keurig is a vendor of single-cup beverage brewing systems. Its new Keurig B80K home-based brewers will use new beverage identification technology implemented with RFID. In the system, “K-Cups” containing the beverage powder are embedded with RFID tags. The brewers identify the type of K-Cup used and adjust brewing parameters to match the beverage. Prior to design finalization of the brewer, Keurig wants to conduct consumer acceptance testing with 300 brewers in the field.
  • Ticom Geomatics filed an application (with supporting exhibit) for experimental license to operate on various high frequencies in the 2-30 MHz range for test and development of direction finding techniques. As part of a US Navy contract, the company is extending high-frequency groundwave geolocation techniques to include skywave and near vertical incidence skywave (NVIS) signals. This work will include enhancements to a groundwave/skywave discriminator, extensions to include ionospheric modeling, and geolocation and error model enhancements.