Archive for the ‘RFID’ Category

Experimental Radio Applications at the FCC

Sunday, February 5th, 2012

This summarizes a selection from 215 applications for the Experimental Radio Service received by the FCC during October, November, and December 2011. These are related to AM broadcasting, FM broadcasting, spread spectrum on HF and VHF, unmanned aerial vehicle control, electronic warfare support, small satellites, white space technology, video production, managed access, TV interference, RFID, and radar.  The descriptions are listed in order of the lowest frequency found in the application.

(more…)

Experimental Radio Applications at the FCC

Sunday, November 6th, 2011

This summarizes a selection from 173 applications for the Experimental Radio Service received by the FCC during August and September 2011. These are related to long-range low-frequency radar, amateur radio, shortwave data, wireless microphones, single-sideband, mine detection, millimeter-wave communications, signal intelligence, automotive radar, satellite feeder links, meteor-burst communications, aircraft telemetry, white space systems, border security radar, 3G and 4G applications, RFID, wind turbine testing, unmanned aerial vehicles, spacecraft telemetry and control, aircraft passenger broadband, and autonomous aircraft landing systems. The descriptions are sorted by the lowest frequency found in the application.

(more…)

Experimental Radio Applications at the FCC

Saturday, August 14th, 2010

This summarizes a selection of applications for the Experimental Radio Service received by the FCC during July 2010. These are related to high-frequency data, military communications, environmental data collection, synthetic aperture radar, WiMAX, sensor networks, interference-resistant communications, LTE, rail transportation, air traffic control, white space networks, and RFID.

  • Harris filed an application (with supporting exhibits) for experimental license to operate on various frequencies between 3 and 15 MHz to test an experimental high-frequency wideband waveform that is intended to operate at either 12 kHz bandwidth or 24 kHz bandwidth to allow faster data transfer via high-frequency communications.

  • Harris also filed an application (with supporting exhibit) for experimental license to operate on 4.94-4.99 GHz in support of development of US Army’s Warfighter Information Network: Tactical (WIN-T) and Future Combat Systems (FCS) programs. Equipment is to consist of the HNRe2 Highband Network Radio, manufactured by Harris. Harris says the HNRe2 is comprised of four elements: 1) the Baseband Processing Unit, 2) the Highband RF Unit (HRFU), 3) an Inertial Navigation Unit (INU), and a GPS device. The HRFU further consists of an upconverter, a High-Powered Amplifier (HPA), a Switched Beam Antenna (SBA), a Low-Noise Amplifier (LNA), and a downconverter). The test network will consist of five fixed nodes and one mobile node. The FCC has asked Harris to justify extended testing in a band that is primarily allocated for non-government public safety use.
  • Canon U.S.A. filed an application (with supporting exhibits) for special temporary authority to operate wireless devices in support of a private technology and product exhibition from September 1, 2010 through September 3, 2010 at the Jacob K. Javits Convention Center in New York, NY. Canon is planning to import many wireless devices from Japan to be used with displays during the exhibition. These devices are not FCC compliant and not expected to be FCC compliant until after the exhibition. Frequencies requested include 315.0-315.7 MHz, 2.40-2.50 GHz, 5.18-5.67 GHz, and 61.6-62.5 GHz. This application was granted on August 11.

(more…)

Experimental Radio Applications at the FCC

Tuesday, April 6th, 2010

This summarizes a selection of applications for the Experimental Radio Service received by the FCC during March 15-30, 2010. These are related to weather radar, medical telemetry, RFID, satellite, aircraft telemetry, high-frequency direction finding, and meteorological telemetry.

  • Fitness Foundation filed an application (with supporting exhibit) for experimental license to test wireless monitoring and reporting of people’s activity levels in support of an effort to combat obesity and promote active lifestyles. Operation is to be on 174-216 MHz and 512-700 MHz near Mt. Lebanon, Pennsylvania. FCC staff is concerned about the potential for interference to others and has asked the applicant why so much bandwidth is needed.
  • Hyperion Technology Group filed an application (with supporting exhibit) for experimental license to support the development of a system capable of early detection of extreme weather phenomena, including wind shear, tornadoes and hurricane-spawned tornadoes. Operation is to be nationwide on 10.4-10.6 GHz. FCC staff questions this frequency selection, saying in correspondence to the applicant that there are two footnotes to the U.S Table of Allocations that are problematic. US58 prohibits pulsed emissions in 10-10.5 GHz. US59 prohibits any emission other than N0N in 10.5-10.55 GHz. Staff further observes that while experimental licenses are not always bound by allocation restrictions, there is great likelihood that NTIA would object to this application when it gets coordinated with government users. The applicant has suggested a compromise, and notes that the frequency range was selected based on the availability of relatively-inexpensive commercial off-the-shelf hardware for the initial research. Once the concept is validated and high-energy wind phenomena are better understood, it is the applicant’s intention to move to a different frequency and build custom hardware to support that frequency.
  • David Miller (MIT) filed an application (with supporting exhibits) for experimental license to conduct testing of the CASTOR (Cathode/Anode Satellite Thruster for Orbital Repositioning) satellite. The intent is to validate the performance and application of Diverging Cusped Field Thruster (DCFT) technology. According to the Miller, this will be achieved by taking on-orbit state data to compare the degradation experienced by the DCFT to that of similar technologies such as Hall thrusters. In order to measure the thruster’s on-orbit performance, efficiency, and degradation, it is necessary to transmit sensor data and pictures obtained from an onboard camera to a ground station. Operation is to be in low-earth orbit (700-3000 km) on 2.4000-2.4835 GHz.
  • Northrop Grumman filed an application (with supporting exhibit) for special temporary authority for the purpose of developing an airborne platform with a microwave transmitter to fulfill a contract with the US Air Force. The requested frequency band is 2250-2260 MHz.
  • The University of Washington filed an application for special temporary authority to operate on 433.845-433.995 MHz from free-flying balloons launched in Washington State. This is to support, as part of a class project, research in atmospheric structure using a transmitter as a sounder to make atmospheric temperature profiles and as a beacon to recover the transmitter.
  • Keurig, Inc. filed an application for special temporary authority to operate RFID technology on 902-928 MHz. Keurig is a vendor of single-cup beverage brewing systems. Its new Keurig B80K home-based brewers will use new beverage identification technology implemented with RFID. In the system, “K-Cups” containing the beverage powder are embedded with RFID tags. The brewers identify the type of K-Cup used and adjust brewing parameters to match the beverage. Prior to design finalization of the brewer, Keurig wants to conduct consumer acceptance testing with 300 brewers in the field.
  • Ticom Geomatics filed an application (with supporting exhibit) for experimental license to operate on various high frequencies in the 2-30 MHz range for test and development of direction finding techniques. As part of a US Navy contract, the company is extending high-frequency groundwave geolocation techniques to include skywave and near vertical incidence skywave (NVIS) signals. This work will include enhancements to a groundwave/skywave discriminator, extensions to include ionospheric modeling, and geolocation and error model enhancements.

Recent Experimental Radio Filings at the FCC

Sunday, January 10th, 2010

Companies request permission from the FCC to test cell phone jamming, antenna-induced interference, millimeter-wave transmission, RFID, radar, and remote-controlled streetlights.
(more…)