LightSquared has asked the FCC for special temporary authority to conduct four months of tests in support of a potential frequency move. The application, and accompanying exhibit, were received by the FCC on March 5.
As background, to help resolve GPS interference concerns, LightSquared has proposed to conduct a portion of its terrestrial operations in 1670-1680 MHz instead of 1545-1555 MHz. It currently has authority to use half that, 1670-1675 MHz. The 1675-1680 MHz portion, however, is currently allocated for use by meteorological aids such as radiosondes and satellites. The company wants to conduct tests to see if its base stations would be compatible with other services in the 1675-1680 MHz band. A big concern is the radiosondes. Another part of the testing is determining if the radiosondes would be compatible with other services in the 400.15-406 MHz band, if they need to move there to accommodate LightSquared’s needs in 1675-1680 MHz. If a move is needed, the tests would help determine the costs of such a move, and “inform an eventual determination of an appropriate vehicle for meeting these costs” (i.e., who pays).
LightSquared asks to conduct tests across the continental United States. All transmitters would be coordinated with the FCC and NTIA, as needed.
This summarizes a selection of applications for the Experimental Radio Service received by the FCC during September-December 2012. These are related to LF and HF propagation, cognitive radio, satellite telemetry, ultra-wideband (UWB), ground-penetrating and synthetic-aperture radar, mobile broadband, aerial communications (balloons), LTE, managed access, military communications, Wi-Fi, GPS, sensor networks, and MVDDS. The descriptions are sorted by the lowest frequency in the application.
This summarizes a selection of applications for the Experimental Radio Service received by the FCC during January, February, and March 2012. These are related to radar, Amateur Radio, spread spectrum, white space, spacecraft telemetry, propagation testing, satellites, smart grid, femtocells, machine-to-machine communications, ad hoc networks, 4G backhaul, electronic warfare, and robotics. The descriptions are listed in order of the lowest frequency found in the application.
This summarizes a selection from 215 applications for the Experimental Radio Service received by the FCC during October, November, and December 2011. These are related to AM broadcasting, FM broadcasting, spread spectrum on HF and VHF, unmanned aerial vehicle control, electronic warfare support, small satellites, white space technology, video production, managed access, TV interference, RFID, and radar. The descriptions are listed in order of the lowest frequency found in the application.
This summarizes a selection from 173 applications for the Experimental Radio Service received by the FCC during August and September 2011. These are related to long-range low-frequency radar, amateur radio, shortwave data, wireless microphones, single-sideband, mine detection, millimeter-wave communications, signal intelligence, automotive radar, satellite feeder links, meteor-burst communications, aircraft telemetry, white space systems, border security radar, 3G and 4G applications, RFID, wind turbine testing, unmanned aerial vehicles, spacecraft telemetry and control, aircraft passenger broadband, and autonomous aircraft landing systems. The descriptions are sorted by the lowest frequency found in the application.
This summarizes a selection of applications for the Experimental Radio Service received by the FCC during June and July 2011. These are related to AM broadcasting, cognitive radio, land vehicle testing, ultra-wideband, ground penetrating radar, synthetic aperture radar, LTE, autonomous aerial refueling, SONAR telemetry, surveillance radar, wind-farm obstruction lighting, seismic activity detection, directed energy weapons, unmanned helicopter flights, precision electronic warfare, shaped-offset QPSK, Ku-band antennas, TV white space, and missile telemetry. The descriptions are sorted by frequency.
This summarizes a selection of applications for the Experimental Radio Service received by the FCC during April and May 2011. These are related to TV white space, electromagnetic compatibility testing, train control, point-to-multipoint communications, satellite communications, radar, unmanned aerial vehicles, GPS, ultra-wideband, mobile satellite service, UMTS, mobile broadband picocells, wireless backhaul, and IEEE 802.11p. The descriptions are sorted by frequency.
This summarizes a selection of applications for the Experimental Radio Service received by the FCC during March 2011. These are related to VHF propagation, satellite communications, TV white space, military communications, radar, software defined radio, aircraft broadband services, adaptive networks, peer-to-peer networks, intermodulation testing, unmanned aircraft systems, maritime broadband communications, border surveillance, target acquisition, and millimeter wave propagation. The applications are sorted by frequency.
This summarizes a selection of applications for the Experimental Radio Service received by the FCC during February 2011. These are related to cognitive radio, land mobile, TV white space, unmanned aircraft systems, satellite terminals, ultra-wideband, wildlife tracking, interference detection, and radar. The descriptions are sorted by frequency.
This summarizes a selection of applications for the Experimental Radio Service received by the FCC during January 2011. These are related to land mobile radio, VHF propagation study, satellite communications, network-centric warfare, TV white space, software defined radio (SDR), military command and control, remotely piloted aircraft, LTE, radio direction finding, OpenBTS, Identification Friend or Foe (IFF), peer-to-peer communications, flight test telemetry, automotive telemetry, WiMAX, surveillance radar, vehicle radar systems, and millimeter-wave communications.
This summarizes a selection of applications for the Experimental Radio Service received by the FCC during December 2010. These are related to FM broadcasting, Positive Train Control, TV white space, mobile satellite terminals, GSM, UMTS, through-the-wall surveillance radar, troposcatter communications, millimeter-wave propagation, flight test telemetry, Doppler weather radar, and air-to-air military radar.
This summarizes a selection of applications for the Experimental Radio Service received by the FCC during November 2010. These are related to ultra-wideband (UWB), radar, TV white space, millimeter-wave, mobile satellite terminals, UMTS, military networking, microwave interferometry, flight test telemetry, public safety, and seismic data acquisition.
This summarizes a selection of applications for the Experimental Radio Service received by the FCC during September 2010. These are related to radar, military communications, ad hoc networks, GPS, avionics, WiMAX, maritime identification systems, TETRA, public safety, land mobile interoperability, prison cellphone management, air-ground radiotelephone service, picocells for cable systems, transportable satellite antennas, unmanned aircraft systems, consumer satellite terminals, and low-profile satellite antennas.
Northrop Grumman filed an application for special temporary authority in support of airborne experimental testing of the STARLite Tactical Radar System a small, lightweight (65 pounds) radar used for tactical reconnaissance by Unmanned Aerial Systems. Transmissions will be between 16.2 to 17.3 GHz. The radar has three modes: Synthetic Aperture Radar (SAR), Ground Moving Target Indicator (GMTI), and Maritime Moving Target Indicator. In the SAR mode, the radar imagery can be one of three forms: parallel to the aircraft flight vector, along a specified ground path independent of the aircraft flight path, or a higher-resolution spot image. In the GMTI mode, the radar provides moving target locations overlaid on a digital map. The MMTI mode performs a similar function for targets over water.
DRS Tactical Systems, a supplier of rugged computer equipment for military environments, filed an application (with supporting exhibit) for experimental license to test a mobile radio gateway. In the test, the mobile node will be a High Mobility Multipurpose Wheeled Vehicle (Humvee) with a mast. Equipment will be Harris model RF-7800W-OU440 broadband Ethernet radios attached to a DRS gateway system. This system is intended aid military and commercial entities by providing complex gateway functionality while in motion. Operation will be on 4.94-4.99 GHz.
This summarizes a selection of applications for the Experimental Radio Service received by the FCC during August 2010. These are related to radar, military communications, mesh networking, unmanned aerial vehicles, satellite services, biomedical telemetry, aircraft telemetry, safe-driving systems, geophysical sensors, electronic warfare, smart grid, and antenna testing.
INOVA Geophysical Equipment Limited filed an application (with supporting exhibits) to test a proprietary mobile radio system in the 30-36 MHz and 150-174 MHz bands. The radio links would be used to control remote geophysical seismic recording equipment, which INOVA manufactures. At the end of testing, INOVA plans to put the radio equipment into production and lease it to customers.
Fortress Technologies filed an application for experimental license to test several of its secure mesh-networking products developed for military applications. Several exhibits are included but they are not publicly available due to a confidentiality request. Operation is to be on 4.9425-4.9875 GHz.
This summarizes a selection of applications for the Experimental Radio Service received by the FCC during July 2010. These are related to high-frequency data, military communications, environmental data collection, synthetic aperture radar, WiMAX, sensor networks, interference-resistant communications, LTE, rail transportation, air traffic control, white space networks, and RFID.
Harris filed an application (with supporting exhibits) for experimental license to operate on various frequencies between 3 and 15 MHz to test an experimental high-frequency wideband waveform that is intended to operate at either 12 kHz bandwidth or 24 kHz bandwidth to allow faster data transfer via high-frequency communications.
Harris also filed an application (with supporting exhibit) for experimental license to operate on 4.94-4.99 GHz in support of development of US Army’s Warfighter Information Network: Tactical (WIN-T) and Future Combat Systems (FCS) programs. Equipment is to consist of the HNRe2 Highband Network Radio, manufactured by Harris. Harris says the HNRe2 is comprised of four elements: 1) the Baseband Processing Unit, 2) the Highband RF Unit (HRFU), 3) an Inertial Navigation Unit (INU), and a GPS device. The HRFU further consists of an upconverter, a High-Powered Amplifier (HPA), a Switched Beam Antenna (SBA), a Low-Noise Amplifier (LNA), and a downconverter). The test network will consist of five fixed nodes and one mobile node. The FCC has asked Harris to justify extended testing in a band that is primarily allocated for non-government public safety use.
Canon U.S.A. filed an application (with supporting exhibits) for special temporary authority to operate wireless devices in support of a private technology and product exhibition from September 1, 2010 through September 3, 2010 at the Jacob K. Javits Convention Center in New York, NY. Canon is planning to import many wireless devices from Japan to be used with displays during the exhibition. These devices are not FCC compliant and not expected to be FCC compliant until after the exhibition. Frequencies requested include 315.0-315.7 MHz, 2.40-2.50 GHz, 5.18-5.67 GHz, and 61.6-62.5 GHz. This application was granted on August 11.
Steve is a consulting wireless engineer who provides support for projects involving technology analysis, standards, patents, policy, regulation, and corporate communication. Clients include vendors, service providers, asset managers, government agencies, and other professional service providers.