back to homepage

Archive for the ‘Wireless’ Category

Experimental Radio Applications at the FCC

This summarizes a selection of applications for the Experimental Radio Service received by the FCC during June and July 2011. These are related to AM broadcasting, cognitive radio, land vehicle testing, ultra-wideband, ground penetrating radar, synthetic aperture radar, LTE, autonomous aerial refueling, SONAR telemetry, surveillance radar, wind-farm obstruction lighting, seismic activity detection, directed energy weapons, unmanned helicopter flights, precision electronic warfare, shaped-offset QPSK, Ku-band antennas, TV white space, and missile telemetry. The descriptions are sorted by frequency.

Read the rest of this entry »

Experimental Radio Applications at the FCC

This summarizes a selection of applications for the Experimental Radio Service received by the FCC during January 2011. These are related to land mobile radio, VHF propagation study, satellite communications, network-centric warfare, TV white space, software defined radio (SDR), military command and control, remotely piloted aircraft, LTE, radio direction finding, OpenBTS, Identification Friend or Foe (IFF), peer-to-peer communications, flight test telemetry, automotive telemetry, WiMAX, surveillance radar, vehicle radar systems, and millimeter-wave communications.

Read the rest of this entry »

Experimental Radio Applications at the FCC

This summarizes a selection of applications for the Experimental Radio Service received by the FCC during December 2010. These are related to FM broadcasting, Positive Train Control, TV white space, mobile satellite terminals, GSM, UMTS, through-the-wall surveillance radar, troposcatter communications, millimeter-wave propagation, flight test telemetry, Doppler weather radar, and air-to-air military radar.

Read the rest of this entry »

Experimental Radio Applications at the FCC

This summarizes a selection of applications for the Experimental Radio Service received by the FCC during November 2010. These are related to ultra-wideband (UWB), radar, TV white space, millimeter-wave, mobile satellite terminals, UMTS, military networking, microwave interferometry, flight test telemetry, public safety, and seismic data acquisition.

Read the rest of this entry »

FCC Takes Further Steps toward Mobile Broadband in TV Spectrum

On November 30, the FCC adopted a Notice of Proposed Rulemaking (NPRM) as a preliminary step toward making the current TV broadcast spectrum available for use by fixed and mobile wireless broadband services. The proposed rules would do three things: 1) make fixed and mobile wireless services co-primary with broadcasting in the FCC’s Table of Frequency Allocations, 2) create a regulatory structure giving two or more TV stations the option to share one 6 MHz channel, and 3) improve VHF TV reception through power increases and adoption of receiver antenna standards. No service rules are being proposed; they’re to come later. Congress has yet to approve incentive auction authority.

Read the rest of this entry »

Posted by Steven J. Crowley to 4G, Antennas, Broadband, DTV, FCC, IMT-Advanced, Regulatory, Spectrum, TV Broadcasting, Wireless @ 12:09 pm, 12/02/10 | No Comments

The FCC’s Spectrum Deficit Estimate

The FCC’s National Broadband Plan (NBP) recommends that the Commission make available 500 MHz of new spectrum for wireless broadband, including 300 MHz for mobile use. In support of that recommendation, on October 21, the FCC released an FCC Omnibus Broadband Initiative technical paper: Mobile Broadband: The Benefits of Additional Spectrum. The paper concludes that mobile data demand is likely to exceed capacity in the near term and, in particular, that the spectrum deficit is likely to approach 300 MHz by 2014.

Read the rest of this entry »

Posted by Steven J. Crowley to 4G, Broadband, DTV, FCC, Femtocells, IMT-Advanced, National Broadband Plan, Spectrum, TV Broadcasting, Video, Wi-Fi, Wireless @ 12:45 pm, 11/22/10 | No Comments

In the Transition to 4G, Voice will Stay on 3G

Most cellular operators are beginning the transition from 3G technologies to 4G LTE. That will mainly be for high-speed data and not voice, support for which will come years later. Communications engineer Jim Murphy describes some of the networking issues that make voice impractical on LTE on day one.  To his comments I’d add that the preferred LTE voice solution is VoIP on the IP Multimedia System (IMS) framework, which has had slow adoption in the mobile community.

Jim’s example is from the 3GPP family of technologies, of which LTE is part. Most 3GPP2 operators, such as Verizon Wireless, are also planning a migration to LTE. They migrate from a different family of technologies, those specified in 3GPP2 and which include cdma2000 developed largely by Qualcomm. In Verizon’s transition, high-speed data on cdma2000 networks, now provided by EV-DO, will migrate to LTE. Voice will stay on cdma2000 1x for several years. That’s not a problem, because that technology keeps improving. The latest version, called cdma2000 1x Advanced, has achieved a 50x increase in voice capacity over the predecessor IS-95 system launched in 1993.

Both 3GPP and 3GPP2 3G voice feature a soft-handover (make-before-break) scheme that allows for, essentially, a circuit-switched connection. Yes, you’ll be able to run Skype and other VoIP services on 4G LTE data networks, if you want. In terms of the total user experience, however, most will prefer the seamlessness of standards-based integrated voice capability.

VoIP is the future. For 4G voice, though, it’s just great in theory at this time.

Posted by Steven J. Crowley to 3GPP, 3GPP2, Infrastructure, LTE, Qualcomm, Standardization, Wireless @ 9:49 am, 10/15/10 | No Comments

Experimental Radio Applications at the FCC

This summarizes a selection of applications for the Experimental Radio Service received by the FCC during September 2010. These are related to radar, military communications, ad hoc networks, GPS, avionics, WiMAX, maritime identification systems, TETRA, public safety, land mobile interoperability, prison cellphone management, air-ground radiotelephone service, picocells for cable systems, transportable satellite antennas, unmanned aircraft systems, consumer satellite terminals, and low-profile satellite antennas.

  • Northrop Grumman filed an application for special temporary authority in support of airborne experimental testing of the STARLite Tactical Radar System a small, lightweight (65 pounds) radar used for tactical reconnaissance by Unmanned Aerial Systems. Transmissions will be between 16.2 to 17.3 GHz. The radar has three modes: Synthetic Aperture Radar (SAR), Ground Moving Target Indicator (GMTI), and Maritime Moving Target Indicator. In the SAR mode, the radar imagery can be one of three forms: parallel to the aircraft flight vector, along a specified ground path independent of the aircraft flight path, or a higher-resolution spot image. In the GMTI mode, the radar provides moving target locations overlaid on a digital map. The MMTI mode performs a similar function for targets over water.

  • DRS Tactical Systems, a supplier of rugged computer equipment for military environments, filed an application (with supporting exhibit) for experimental license to test a mobile radio gateway. In the test, the mobile node will be a High Mobility Multipurpose Wheeled Vehicle (Humvee) with a mast. Equipment will be Harris model RF-7800W-OU440 broadband Ethernet radios attached to a DRS gateway system. This system is intended aid military and commercial entities by providing complex gateway functionality while in motion. Operation will be on 4.94-4.99 GHz.

Read the rest of this entry »

IEEE Standards Board Approves Sub 1 GHz 802.11 (Wi-Fi) Project

Even though Wi-Fi is standardized for the 2 – 5 GHz frequency range, there is non-standard modified Wi-Fi equipment available that operates in the US 902-928 MHz ISM band.  Vendors take the core technology and change the frequency.

The demand is, in part, from the smart grid community, who like it for linking to smart meters because of the band’s greater range and lower obstruction losses.  A problem, though, has been lack of interoperability. Each vendor has its own implementation, and smart grid customers don’t want to be tied to one vendor.

Today the IEEE Standards Association’s Standards Board approved a request by IEEE 802 Working Group 802.11 to start a project that will amend the 802.11 standard to include sub 1 GHz operation. This project, under new Task Group 802.11ah, does not include TV white space frequencies; that’s being handled under Task Group 802.11af.

The most important thing this amendment will do is establish standard RF channel widths and center frequencies. Because 802.11 is an international standard, non-US allocation schemes will be considered as well.

Posted by Steven J. Crowley to Ad-hoc Networks, IEEE 802, M2M, Smart Grid, Standardization, Unlicensed, Wi-Fi, Wireless @ 12:01 pm, 09/30/10 | No Comments

FCC Finalizes White-Space Rules

The FCC finalized its white-space rules today, acting on petitions for reconsideration of its earlier decisions. It issued an 88-page  Second Memorandum Opinion and Order that explains its decisions and includes the final white-space rules. A much-shorter press release was also issued.

At least one FCC observer has noted an uncharacteristic level of hype in today’s announcements. The FCC calls it “super Wi-Fi,” and adds the “potential uses of this spectrum are limited only by the imagination.”

Over two years ago, Google called it “Wi-Fi on Steroids.” It was later picked up by the popular press. Not all agree; it’s “Wi-Fi on Crutches” according to one who dares to consider the realities of physics and economics.

I’ll call it “Wi-Fi on Caffeine,” at least with respect to better range and coverage — if not data rates — compared with current Wi-Fi equipment. This is partly due to operation in the UHF-TV band instead of the 2.4 GHz band. In major markets and their suburbs, there will be few or no channels available for white space use. In rural areas and other less dense areas, the technology will be a good fit with Wireless Internet Service Providers (WISPs) and other longer-distance applications.

Cellular operators would like some of the white space on a licensed basis for backhaul in rural areas. They didn’t get it today, but the FCC is actively considering it and we may hear more on that by the end of the year.  No way are all these vacant channels going to be occupied by internet services in the most rural areas, so the proposal of the operators makes sense.

In IEEE 802, Working Groups 802.22 and 802.11 are working on standards that can be used by equipment in these applications; 802.22 may be the one with longer range. Working Group 802.19 is trying to facilitate coexistence between the two. Now, there are asymetric interference effects, which is causing friction between the two groups beyond the normal competition. (802.22 takes the harder interference hit.)

There will be other standards and equipment as well. The white space concept is international, but unique to each area of the world.

Equipment is not easy; it’s challenging to develop sufficiently-broadband power amplifiers and antennas, and to meet the emission mask in a cost-effective manner.

Another challenge is developing a business plan when 120 MHz of TV spectrum could be taken away under the National Broadband Plan.

Read the rest of this entry »

Posted by Steven J. Crowley to Cognitive Radio, Interference, Regulatory, Spectrum, Standardization, Unlicensed, White Space, Wi-Fi, Wireless @ 11:01 pm, 09/23/10 | No Comments

Experimental Radio Applications at the FCC

This summarizes a selection of applications for the Experimental Radio Service received by the FCC during August 2010. These are related to radar, military communications, mesh networking, unmanned aerial vehicles, satellite services, biomedical telemetry, aircraft telemetry, safe-driving systems, geophysical sensors, electronic warfare, smart grid, and antenna testing.

  • INOVA Geophysical Equipment Limited filed an application (with supporting exhibits) to test a proprietary mobile radio system in the 30-36 MHz and 150-174 MHz bands. The radio links would be used to control remote geophysical seismic recording equipment, which INOVA manufactures. At the end of testing, INOVA plans to put the radio equipment into production and lease it to customers.

  • Fortress Technologies filed an application for experimental license to test several of its secure mesh-networking products developed for military applications. Several exhibits are included but they are not publicly available due to a confidentiality request. Operation is to be on 4.9425-4.9875 GHz.

Read the rest of this entry »

Ultra-Wideband: How Regulatory and Standardization Delays Slowed a Wireless Technology

The FCC recently issued an order denying reconsideration petitions in its ultra-wideband (UWB) proceeding. That effectively ends the 12-year UWB rulemaking process. Mitchell Lazarus recounts how UWB became bogged down at the FCC and in a failed standardization attempt in IEEE 802.

UWB, as authorized by the FCC, operates across 3.1 to 10.6 GHz, with very low power at any one frequency; its tendency to cause or receive interference is very low.

IEEE 802 attempted to create a UWB standard in IEEE 802.15.3a but did not, as neither of two competing proposals reached the necessary voting threshold for approval. One of the competing proposals, Multi-band Orthogonal Frequency Division Multiplexing (MB-OFDM), has since seen some consumer success in Wireless USB, which is based on a platform maintained by the WiMedia Alliance; data rates are up to 480 Mbps at a range of about 10 feet.

UWB was eventually standardized in IEEE 802.15.4a, where it exists as an alternative physical-layer to standard IEEE 802.15.4-2006, a standard for very low power, low data rate devices. (The IEEE 802.15.3 family is for higher data rates with higher power consumption.) It uses what was the other competing proposal in 802.15.3a, Direct Sequence UWB (DS-UWB). This standardized form of UWB has been commercialized for asset tracking and other location services, but not yet for consumer applications.
Read the rest of this entry »

Experimental Radio Applications at the FCC

This summarizes a selection of applications for the Experimental Radio Service received by the FCC during July 2010. These are related to high-frequency data, military communications, environmental data collection, synthetic aperture radar, WiMAX, sensor networks, interference-resistant communications, LTE, rail transportation, air traffic control, white space networks, and RFID.

  • Harris filed an application (with supporting exhibits) for experimental license to operate on various frequencies between 3 and 15 MHz to test an experimental high-frequency wideband waveform that is intended to operate at either 12 kHz bandwidth or 24 kHz bandwidth to allow faster data transfer via high-frequency communications.

  • Harris also filed an application (with supporting exhibit) for experimental license to operate on 4.94-4.99 GHz in support of development of US Army’s Warfighter Information Network: Tactical (WIN-T) and Future Combat Systems (FCS) programs. Equipment is to consist of the HNRe2 Highband Network Radio, manufactured by Harris. Harris says the HNRe2 is comprised of four elements: 1) the Baseband Processing Unit, 2) the Highband RF Unit (HRFU), 3) an Inertial Navigation Unit (INU), and a GPS device. The HRFU further consists of an upconverter, a High-Powered Amplifier (HPA), a Switched Beam Antenna (SBA), a Low-Noise Amplifier (LNA), and a downconverter). The test network will consist of five fixed nodes and one mobile node. The FCC has asked Harris to justify extended testing in a band that is primarily allocated for non-government public safety use.
  • Canon U.S.A. filed an application (with supporting exhibits) for special temporary authority to operate wireless devices in support of a private technology and product exhibition from September 1, 2010 through September 3, 2010 at the Jacob K. Javits Convention Center in New York, NY. Canon is planning to import many wireless devices from Japan to be used with displays during the exhibition. These devices are not FCC compliant and not expected to be FCC compliant until after the exhibition. Frequencies requested include 315.0-315.7 MHz, 2.40-2.50 GHz, 5.18-5.67 GHz, and 61.6-62.5 GHz. This application was granted on August 11.

Read the rest of this entry »

The Broadcast and Wireless Industries: Latest Spectrum Arguments at the FCC

The FCC is working under a Congressional deadline of February 17, 2010 to develop a National Broadband Plan. That work includes looking for additional spectrum for wireless broadband services.

On December 2, 2009, the FCC issued a Public Notice asking for more comment on spectrum licensed to broadcast TV stations, and on market-based mechanisms that would encourage broadcasters to make spectrum available for wireless.

TV broadcasters generally like their spectrum as it is. They argue that over-the-air TV is a public service. It is the only source of video programming for some. A large investment was made in the recent DTV transition. They are working on advanced technologies including Mobile DTV and other content delivery platforms. Multicasting provides greater choice in programming without the need to subscribe to a cable or satellite service.
Read the rest of this entry »

Posted by Steven J. Crowley to DTV, Spectrum, Wireless @ 6:07 am, 01/05/10 | No Comments

  • About Steve

    Steve is a consulting wireless engineer who provides support for projects worldwide involving technology and competitive analysis, standardization, regulation, business development, patent portfolio management, and corporate communication. Clients include vendors, service providers, asset managers, government agencies, and other professional service providers. Named by Forbes as a top 10 mobile influencer, "influencing how we perceive developments in mobile, how we learn about it and what we know."
  • Contact

    • E-Mail

    • Telephone

      +1-202-670-5040

    • Address

      Steven J. Crowley, P.E.
      1629 K Street, N.W. Suite 300
      Washington, D.C. 20006

  • Connect

  • Recent Tweets

  • Categories