This summarizes a selection of applications for the Experimental Radio Service received by the FCC during January, February, and March 2012. These are related to radar, Amateur Radio, spread spectrum, white space, spacecraft telemetry, propagation testing, satellites, smart grid, femtocells, machine-to-machine communications, ad hoc networks, 4G backhaul, electronic warfare, and robotics. The descriptions are listed in order of the lowest frequency found in the application.
Recently
Coldplay’s Wireless Hardware Startup
March 27th, 2012I was amused to see a company with the same name as the musical group Coldplay file an FCC application. That turned to surprise when I saw it was, indeed, the group.
Are Fewer Mobile Broadband Competitors Better for Consumers?
March 26th, 2012That’s what a D.C. think tank says. I take a look at this contrary view in a piece I did for GigaOM.
Experimental Radio Applications at the FCC
February 5th, 2012This summarizes a selection from 215 applications for the Experimental Radio Service received by the FCC during October, November, and December 2011. These are related to AM broadcasting, FM broadcasting, spread spectrum on HF and VHF, unmanned aerial vehicle control, electronic warfare support, small satellites, white space technology, video production, managed access, TV interference, RFID, and radar. The descriptions are listed in order of the lowest frequency found in the application.
Three Invalid Assumptions that Make the FCC’s Spectrum Requirements Model Skew High
November 19th, 2011“To generalize, it is often true that studies will be promoted that tend to support the policy inclinations of the Chairman, under whose direction, after all, every draft decision is made.”
“[S]tatistics can lie. But cast as ‘studies’ by commentors, they take on the weight that a decision maker chooses to make of them.”
As a follow-on to its National Broadband Plan, the FCC last year released a Technical Paper intended to validate the Plan’s prediction of a 300 MHz mobile-broadband spectrum deficit by 2014. The Paper describes a spectrum requirements model that totals current spectrum assigned to mobile broadband and applies a multiplier based on expected demand, taking into account expected increased tower density and improvements in air-interface spectrum efficiency. The model’s result is a predicted deficit of 275 MHz in 2014, which rounds to 300 MHz. On the way toward that result, however, the analysis uses just a few of the available data forecasts, ignores offloading of macrocell data to Wi-Fi and femtocells, and assumes the continuation of flat-rate plans for consumers. Some of these oddities I noted in a post at the time. I had hoped the FCC would make the Paper a subject of public comment. That hasn’t happened. So, I’ve looked at the Paper in more detail. I find that when looking at the above factors in a more realistic manner, predicted spectrum requirements go down significantly.
Experimental Radio Applications at the FCC
November 6th, 2011This summarizes a selection from 173 applications for the Experimental Radio Service received by the FCC during August and September 2011. These are related to long-range low-frequency radar, amateur radio, shortwave data, wireless microphones, single-sideband, mine detection, millimeter-wave communications, signal intelligence, automotive radar, satellite feeder links, meteor-burst communications, aircraft telemetry, white space systems, border security radar, 3G and 4G applications, RFID, wind turbine testing, unmanned aerial vehicles, spacecraft telemetry and control, aircraft passenger broadband, and autonomous aircraft landing systems. The descriptions are sorted by the lowest frequency found in the application.
Filling the Spectrum Pipeline
September 8th, 2011In my last post I looked at how the U.S. is behind some other countries in having new mobile broadband spectrum in the pipeline, according to a tally prepared by CTIA. What’s the status of candidate new bands?
CTIA’s International Case for More Spectrum
August 30th, 2011In a recent blog post, CTIA compares some measures of the U.S. wireless industry to those in nine other countries. The purpose is two-fold; to show the U.S. is a leader in number of subscribers, lowest cost per voice minute, and spectrum efficiency, and to argue the need for getting more mobile broadband spectrum in the “pipeline.” These goals are somewhat at odds, and the spectrum-efficiency argument I don’t get, as I’ll explain, but within the constraints of a blog post I think CTIA makes the case that the U.S. is a clear leader in some areas, and that the prospects for more mobile spectrum in the U.S. are fuzzier than they should be today.
FCC Gets Some Consensus in Wireless Booster Proceeding
July 27th, 2011Comments are in on the FCC’s Notice of Proposed Rulemaking in WT Docket No. 10-4 to create new technical, operational, and coordination rules for wireless signal boosters in various services. These include the Commercial Mobile Radio Services (CMRS) that are covered by Part 22 (Cellular), Part 24 (Broadband PCS), and Part 27 (AWS & 700 MHz) of the FCC’s Rules. The services covered also include Part 90 (Land Mobile) and Part 95 (Personal Radio).
Wired versus Wireless
July 19th, 2011The following is my response to a query on LTE versus wired, and the user experience. It capsulizes my current thinking, which evolves.
To your point, I don’t see LTE being competitive with wired in terms of speed or reliability today or in the future. You take the hit there for the convenience of mobile or portable operation. There’s a notion that if we just add enough base stations and repurpose enough spectrum to LTE, we can replicate the home wired experience in the mobile environment, but I don’t think that’s practical. The throughput from an LTE sector is divided among all users in the sector. If everyone wants to watch the Super Bowl at once on LTE, forget it (unless the LTE broadcasting standard is implemented, which let’s everyone watch the same channel like today’s TV (cough)). On FIOS or cable, the Super Bowl is no problem.
Experimental Radio Applications at the FCC
June 13th, 2011This summarizes a selection of applications for the Experimental Radio Service received by the FCC during April and May 2011. These are related to TV white space, electromagnetic compatibility testing, train control, point-to-multipoint communications, satellite communications, radar, unmanned aerial vehicles, GPS, ultra-wideband, mobile satellite service, UMTS, mobile broadband picocells, wireless backhaul, and IEEE 802.11p. The descriptions are sorted by frequency.
Spectrum, Data, Capacity, and PR
May 19th, 2011A couple of days ago the Mobile Future coalition posted a short video on YouTube advocating the allocation of more spectrum for mobile broadband. As evidence of the need, it says that, compared to feature phones, smartphones use 24 times the spectrum and tablets 120 times the spectrum.
Reports from NAB and CTIA Address Efficient Use of Spectrum
May 14th, 2011The Challenge of HD Video Streaming on LTE
April 22nd, 2011One of AT&T’s non-redacted arguments in support of its acquisition of T-Mobile USA is that data usage on AT&T’s network is projected to “skyrocket by a factor of eight to ten” over the next five years due in part to streaming HD video. AT&T’s vision is that T-Mobile’s resources would be used to relieve resulting capacity restraints.
Enabling an HD streaming service will be challenging because of the relatively-high and somewhat-constant bit rates required in a fading radio environment. Wondering how practical this is, I recalled a paper Motorola prepared last year reporting some of its simulation results on mobile broadband streaming video.