back to homepage

Archive for the ‘Military’ Category

Experimental Radio Applications at the FCC

This summarizes a selection of applications for the Experimental Radio Service received by the FCC during September-December 2012. These are related to LF and HF propagation, cognitive radio, satellite telemetry, ultra-wideband (UWB), ground-penetrating and synthetic-aperture radar, mobile broadband, aerial communications (balloons), LTE, managed access, military communications, Wi-Fi, GPS, sensor networks, and MVDDS. The descriptions are sorted by the lowest frequency in the application.

Read the rest of this entry »

Experimental Radio Applications at the FCC

This summarizes a selection from 289 applications for the Experimental Radio Service received by the FCC during April, May, and June 2012. These are related to AM, high-frequency propagation, ultra-wideband, frequency-hopped VHF, managed access, small satellites, radar, MIMO, TV white space, low-power FM, stadium wireless service, GSM, and DTV. The descriptions are sorted by the lowest frequency found in the application.

Read the rest of this entry »

Experimental Radio Applications at the FCC

This summarizes a selection from 215 applications for the Experimental Radio Service received by the FCC during October, November, and December 2011. These are related to AM broadcasting, FM broadcasting, spread spectrum on HF and VHF, unmanned aerial vehicle control, electronic warfare support, small satellites, white space technology, video production, managed access, TV interference, RFID, and radar.  The descriptions are listed in order of the lowest frequency found in the application.

Read the rest of this entry »

Experimental Radio Applications at the FCC

This summarizes a selection from 173 applications for the Experimental Radio Service received by the FCC during August and September 2011. These are related to long-range low-frequency radar, amateur radio, shortwave data, wireless microphones, single-sideband, mine detection, millimeter-wave communications, signal intelligence, automotive radar, satellite feeder links, meteor-burst communications, aircraft telemetry, white space systems, border security radar, 3G and 4G applications, RFID, wind turbine testing, unmanned aerial vehicles, spacecraft telemetry and control, aircraft passenger broadband, and autonomous aircraft landing systems. The descriptions are sorted by the lowest frequency found in the application.

Read the rest of this entry »

Experimental Radio Applications at the FCC

This summarizes a selection of applications for the Experimental Radio Service received by the FCC during June and July 2011. These are related to AM broadcasting, cognitive radio, land vehicle testing, ultra-wideband, ground penetrating radar, synthetic aperture radar, LTE, autonomous aerial refueling, SONAR telemetry, surveillance radar, wind-farm obstruction lighting, seismic activity detection, directed energy weapons, unmanned helicopter flights, precision electronic warfare, shaped-offset QPSK, Ku-band antennas, TV white space, and missile telemetry. The descriptions are sorted by frequency.

Read the rest of this entry »

Experimental Radio Applications at the FCC

This summarizes a selection of applications for the Experimental Radio Service received by the FCC during April and May 2011. These are related to TV white space, electromagnetic compatibility testing, train control, point-to-multipoint communications, satellite communications, radar, unmanned aerial vehicles, GPS, ultra-wideband, mobile satellite service, UMTS, mobile broadband picocells, wireless backhaul, and IEEE 802.11p. The descriptions are sorted by frequency.

Read the rest of this entry »

Experimental Radio Applications at the FCC

This summarizes a selection of applications for the Experimental Radio Service received by the FCC during March 2011. These are related to VHF propagation, satellite communications, TV white space, military communications, radar, software defined radio, aircraft broadband services, adaptive networks, peer-to-peer networks, intermodulation testing, unmanned aircraft systems, maritime broadband communications, border surveillance, target acquisition, and millimeter wave propagation.  The applications are sorted by frequency.

Read the rest of this entry »

Experimental Radio Applications at the FCC

This summarizes a selection of applications for the Experimental Radio Service received by the FCC during February 2011. These are related to cognitive radio, land mobile, TV white space, unmanned aircraft systems, satellite terminals, ultra-wideband, wildlife tracking, interference detection, and radar. The descriptions are sorted by frequency.

Read the rest of this entry »

Experimental Radio Applications at the FCC

This summarizes a selection of applications for the Experimental Radio Service received by the FCC during January 2011. These are related to land mobile radio, VHF propagation study, satellite communications, network-centric warfare, TV white space, software defined radio (SDR), military command and control, remotely piloted aircraft, LTE, radio direction finding, OpenBTS, Identification Friend or Foe (IFF), peer-to-peer communications, flight test telemetry, automotive telemetry, WiMAX, surveillance radar, vehicle radar systems, and millimeter-wave communications.

Read the rest of this entry »

Experimental Radio Applications at the FCC

This summarizes a selection of applications for the Experimental Radio Service received by the FCC during December 2010. These are related to FM broadcasting, Positive Train Control, TV white space, mobile satellite terminals, GSM, UMTS, through-the-wall surveillance radar, troposcatter communications, millimeter-wave propagation, flight test telemetry, Doppler weather radar, and air-to-air military radar.

Read the rest of this entry »

Experimental Radio Applications at the FCC

This summarizes a selection of applications for the Experimental Radio Service received by the FCC during November 2010. These are related to ultra-wideband (UWB), radar, TV white space, millimeter-wave, mobile satellite terminals, UMTS, military networking, microwave interferometry, flight test telemetry, public safety, and seismic data acquisition.

Read the rest of this entry »

Experimental Radio Applications at the FCC

This summarizes a selection of applications for the Experimental Radio Service received by the FCC during September 2010. These are related to radar, military communications, ad hoc networks, GPS, avionics, WiMAX, maritime identification systems, TETRA, public safety, land mobile interoperability, prison cellphone management, air-ground radiotelephone service, picocells for cable systems, transportable satellite antennas, unmanned aircraft systems, consumer satellite terminals, and low-profile satellite antennas.

  • Northrop Grumman filed an application for special temporary authority in support of airborne experimental testing of the STARLite Tactical Radar System a small, lightweight (65 pounds) radar used for tactical reconnaissance by Unmanned Aerial Systems. Transmissions will be between 16.2 to 17.3 GHz. The radar has three modes: Synthetic Aperture Radar (SAR), Ground Moving Target Indicator (GMTI), and Maritime Moving Target Indicator. In the SAR mode, the radar imagery can be one of three forms: parallel to the aircraft flight vector, along a specified ground path independent of the aircraft flight path, or a higher-resolution spot image. In the GMTI mode, the radar provides moving target locations overlaid on a digital map. The MMTI mode performs a similar function for targets over water.

  • DRS Tactical Systems, a supplier of rugged computer equipment for military environments, filed an application (with supporting exhibit) for experimental license to test a mobile radio gateway. In the test, the mobile node will be a High Mobility Multipurpose Wheeled Vehicle (Humvee) with a mast. Equipment will be Harris model RF-7800W-OU440 broadband Ethernet radios attached to a DRS gateway system. This system is intended aid military and commercial entities by providing complex gateway functionality while in motion. Operation will be on 4.94-4.99 GHz.

Read the rest of this entry »

Experimental Radio Applications at the FCC

This summarizes a selection of applications for the Experimental Radio Service received by the FCC during August 2010. These are related to radar, military communications, mesh networking, unmanned aerial vehicles, satellite services, biomedical telemetry, aircraft telemetry, safe-driving systems, geophysical sensors, electronic warfare, smart grid, and antenna testing.

  • INOVA Geophysical Equipment Limited filed an application (with supporting exhibits) to test a proprietary mobile radio system in the 30-36 MHz and 150-174 MHz bands. The radio links would be used to control remote geophysical seismic recording equipment, which INOVA manufactures. At the end of testing, INOVA plans to put the radio equipment into production and lease it to customers.

  • Fortress Technologies filed an application for experimental license to test several of its secure mesh-networking products developed for military applications. Several exhibits are included but they are not publicly available due to a confidentiality request. Operation is to be on 4.9425-4.9875 GHz.

Read the rest of this entry »

Ultra-Wideband: How Regulatory and Standardization Delays Slowed a Wireless Technology

The FCC recently issued an order denying reconsideration petitions in its ultra-wideband (UWB) proceeding. That effectively ends the 12-year UWB rulemaking process. Mitchell Lazarus recounts how UWB became bogged down at the FCC and in a failed standardization attempt in IEEE 802.

UWB, as authorized by the FCC, operates across 3.1 to 10.6 GHz, with very low power at any one frequency; its tendency to cause or receive interference is very low.

IEEE 802 attempted to create a UWB standard in IEEE 802.15.3a but did not, as neither of two competing proposals reached the necessary voting threshold for approval. One of the competing proposals, Multi-band Orthogonal Frequency Division Multiplexing (MB-OFDM), has since seen some consumer success in Wireless USB, which is based on a platform maintained by the WiMedia Alliance; data rates are up to 480 Mbps at a range of about 10 feet.

UWB was eventually standardized in IEEE 802.15.4a, where it exists as an alternative physical-layer to standard IEEE 802.15.4-2006, a standard for very low power, low data rate devices. (The IEEE 802.15.3 family is for higher data rates with higher power consumption.) It uses what was the other competing proposal in 802.15.3a, Direct Sequence UWB (DS-UWB). This standardized form of UWB has been commercialized for asset tracking and other location services, but not yet for consumer applications.
Read the rest of this entry »

Cultural Barriers to Federal Spectrum Reform

As the FCC searches for more spectrum for mobile broadband services, its National Broadband Plan points to federal spectrum as a candidate. Since the National Telecommunications and Information Administration (NTIA) is responsible for allocating federal spectrum, the FCC can’t do much more. Still, the FCC’s recommendations are good. One is for the FCC and NTIA to “develop a joint roadmap to identify additional candidate federal and non-federal spectrum that can be made accessible for both mobile and fixed wireless broadband use, on an exclusive, shared, licensed and/or unlicensed basis.” In support of that, the “FCC and . . . NTIA should create methods for ongoing measurement of spectrum utilization.”

Variations of these proposals have been around for decades, formally and informally. Once in a while, progress is made. In 1995, NTIA suggested the changing the 3650-3700 MHz band from federal-only to mixed-use (federal and non-federal). That happened, and in 2005 the FCC adopted rules that resulted in the creation of the IEEE 802.11y standard. (That allows high-powered Wi-Fi equipment to operate on a co-primary basis in the 3650-3700 MHz band in the US, except when near certain satellite earth stations.)

So, it can happen. That, and recent FCC talk of “unleashing” broadband made me think the above recommendations in the FCC’s Plan might get some traction. I’m less sure now after following the latest writings on the topic by spectrum expert Michael Marcus.

In an August 17 post on his blog, Marcus asks why NTIA isn’t measuring occupancy of the almost exclusively-federal 225-400 MHz band. He finds that the Interdepartment Radio Advisory Committee (IRAC), NTIA’s advisory committee of federal users, is concerned that measurements in major cities – where spectrum is most needed – will show low occupancy because the band is primarily used by military aircraft. Marcus says enough with these delays; in the new era of cognitive radio and dynamic spectrum access technology, it’s time to see some hard spectrum data so sharing options can be examined.

If you’re intrigued by that, there’s more. An August 9 post says an NTIA spectrum advisory committee “evades some major issues and pushes the parochial agendas of some committee members without trying to relate them to the broader public interests.” A May 10 post takes you inside that committee’s meeting, and observes a general effort to protect incumbent spectrum users.

It can happen, but these reports suggest the timetable will be later rather than sooner.

Posted by Steven J. Crowley to Cognitive Radio, Military, NTIA, Regulatory, Spectrum @ 3:35 pm, 08/23/10 | No Comments

  • About Steve

    Steve is a consulting wireless engineer who provides support for projects worldwide involving technology and competitive analysis, standardization, regulation, business development, patent portfolio management, and corporate communication. Clients include vendors, service providers, asset managers, government agencies, and other professional service providers.

    "... influencing how we perceive developments in mobile, how we learn about it and what we know." -- Forbes

    "For a truly nuanced recap of spectrum policy, his Twitter account is a top source." -- CEA

  • Contact

    • E-Mail

    • Telephone

      +1-202-670-5040

    • Address

      Steven J. Crowley, P.E.
      1629 K Street, N.W. Suite 300
      Washington, D.C. 20006

  • Connect

  • Recent Tweets

  • Categories